SICP 3.1.2 The Benefits of Introducing Assignment
代入の効用について説明するだけにしては、Ex 3.5. はちょっとやり過ぎな気もするが、なかなか興味深い内容ではある。
Monte Carlo integration is a method of estimating definite integrals by means of Monte Carlo simulation. Consider computing the area of a region of space described by a predicate P(x, y) that is true for points (x, y) in the region and false for points not in the region. For example, the region contained within a circle of radius 3 centered at (5, 7) is described by the predicate that tests whether (x - 5)2 + (y - 7)2< 32. To estimate the area of the region described by such a predicate, begin by choosing a rectangle that contains the region. For example, a rectangle with diagonally opposite corners at (2, 4) and (8, 10) contains the circle above. The desired integral is the area of that portion of the rectangle that lies in the region. We can estimate the integral by picking, at random, points (x,y) that lie in the rectangle, and testing P(x, y) for each point to determine whether the point lies in the region. If we try this with many points, then the fraction of points that fall in the region should give an estimate of the proportion of the rectangle that lies in the region. Hence, multiplying this fraction by the area of the entire rectangle should produce an estimate of the integral.
Implement Monte Carlo integration as a procedure estimate-integral that takes as arguments a predicate P, upper and lower bounds x1, x2, y1, and y2 for the rectangle, and the number of trials to perform in order to produce the estimate. Your procedure should use the same monte-carlo procedure that was used above to estimate . Use your estimate-integral to produce an estimate of by measuring the area of a unit circle.
You will find it useful to have a procedure that returns a number chosen at random from a given range. The following random-in-range procedure implements this in terms of the random procedure used in section 1.2.6, which returns a nonnegative number less than its input.8
(define (random-in-range low high)
(let ((range (- high low)))
(+ low (random range))))
モンテカルロ法を用いて、単位円の面積(円周率)を求める問題だ。
まず、乱数生成用の函数を定義する。乱数を扱うので、srfi-27を使用する。
:::lisp
;; ランダム数生成のため
(use srfi-27)
(define (random num)
(* (random-real) num))
(define (random-in-range low high)
(let ((range (- high low)))
(+ low (random range))))
次に、テキスト内でも使用されているモンテカルロ函数。試行回数と試行内容から、試行の成功確率を出力する。
:::lisp
(define (monte-carlo trials experiment)
(define (iter trials-remaining trials-passed)
(cond ((= trials-remaining 0)
(/ trials-passed trials))
((experiment)
(iter (- trials-remaining 1) (+ trials-passed 1)))
(else
(iter (- trials-remaining 1) trials-passed))))
(iter trials 0))
そして、数値積分を行う。矩形の面積に1.0をかけているのは、単に小数で結果を見たいからだ。
:::lisp
(define (estimate-integral P x1 x2 y1 y2 trials)
(define (rectangle-space)
(* (- x2 x1)
(- y2 y1)))
(define (test)
(P (random-in-range x1 x2) (random-in-range y1 y2)))
(* (* (rectangle-space) 1.0)
(monte-carlo trials test)))
最後に肝心の、正方形と(述語としての)円を与える。
:::lisp
(define (estimate-pi trials)
(define (unit-circle)
(lambda (x y) (>= 1 (+ (* x x)
(* y y)))))
(estimate-integral (unit-circle)
-1 1 -1 1
trials))
大体100万回ぐらいで小数点以下2桁まで等しくなった。
:::lisp
;; gosh> (estimate-pi 10)
;; 3.6
;; gosh> (estimate-pi 100)
;; 3.2
;; gosh> (estimate-pi 1000)
;; 3.196
;; gosh> (estimate-pi 10000)
;; 3.1216
;; gosh> (estimate-pi 100000)
;; 3.13956
;; gosh> (estimate-pi 1000000)
;; 3.142192
;; gosh> (estimate-pi 1000000)
;; 3.143176